

0040-4039(94)01636-4

Relative Configuration of the C-1 to C-5 Fragment of Fumonisin B₁

John W. ApSimon¹, Barbara A. Blackwell², Oliver E. Edwards¹ and Alain Fruchier³

 ¹Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.
²Plant Research Centre, Agriculture Canada, Ottawa, Ontario, Canada, K1A 0C6.
³École Nationale Supérieure de Chimie, 34053 Montpellier Cedex 1, France.

Abstract: Synthesis of the 2,3-carbamate (2) and the 3,5-carbonate-N-p-bromobenzoate (4) derivatives of fumonisin B_1 have been made in an initial study of the configuration of fumonisins. These have been used to determine the relative configuration of the C(1)-C(5) fragment.

Fusarium moniliforme (Sheldon) is a prevalent mould on corn, sorghum and other grains throughout the world and has been shown to be toxic and carcinogenic for animals both as a contaminant of grains and as a pure culture.^{1,2} This fungus contains a number of toxins, a group of which called fumonisins are thought to be mainly responsible for these diseases. Purified fumonisin B_1 (FB₁) has been shown to cause equine leukoencephalomalacia,³ porcine pulmonary edema⁴ and to promote tumour formation in rats.⁵ FB₁ has also been shown to be a potent inhibitor of ceramide synthetase,⁶ thus blocking sphingolipid biosynthesis. This activity must be related to the stereochemical arrangement of the ten chiral centres in FB₁. With the hope of obtaining a crystalline compound for X-ray analysis, a number of derivatives of FB₁ containing semi-rigid units were prepared. These failed to crystallize, but enabled assignment of the relative stereochemistry at carbons 2,3 and 5 using NMR spectroscopy.

Results. FB₁ tetramethyl ester (FB₁ Me₄, 1) was converted to the 2,3-carbamate (2) using triphosgene and triethylamine in benzene (25% yield). ir v_{max} (CH₂Cl₂) 3600, 3530, 3445, and 1735 cm⁻¹. FABMS,⁷ m/z 804 (M+1). ¹H and ¹³C NMR;⁸ see Tables 1 and 3.

The N-p-bromobenzoyl derivative 3 of compound 1 was prepared in 70% yield using p-bromobenzoyl chloride in a tetrahydrofuran/triethylamine mixture at 0°C. ir v_{max} (CH₂Cl₂) 3600, 3520, 3425, 1735 (str), 1665 (med), and 1591 (wk) cm⁻¹. FABMS, m/z 960 (M+1). ¹H and ¹³C NMR; see Tables 1 and 3.

The 3,5-carbonate 4 was prepared from 3 using phosgene in pyridine at 0°C (added Cr(OAc)₃ catalysed the reaction and prevented side reactions). Recycling twice was required to bring the yield to 60% based on unrecovered 3. ir v_{max} (CH₂Cl₂) 3520, 3420, 1738, 1655 cm⁻¹. FABMS, m/z 986 (M+1). ¹H and ¹³C NMR; see Tables 1 and 3.

Discussion. Selected NMR data for compounds 1 to 4 are given in Tables 1 and 3, and are compared to the parent compound, FB₁. Complete assignments have been made for all protons and carbons of 1-4. These will be published elsewhere.⁹ Chemical shifts varied little from those of FB₁, except at the sites of substitution. The presence of the N-p-bromobenzoate ester induced a relatively large 1.4 ppm downfield shift of the H-2 resonance of 3, whereas the formation of the carbamate ring induced a 0.8-0.9 ppm downfield shift. The introduction of the 3,5-carbonate ring in 4 caused only a 0.6 ppm shift in the relevant proton peaks.

Comparison of the ¹H/¹H coupling constants of **2** and **4** is shown in Figure 1 and Table 2. Comparison of the carbonate coupling constants to those of the model compounds 2-oxo-1,3- dioxanes,¹⁰ shows that the C-3 and the C-5 hydroxyl functions are trans in these cyclic compounds. The $J_{3,4}$ value of 10.3 Hz in **4** is somewhat larger than that observed in FB₁ (approximately 9 Hz) due to the fixed configuration induced by the ring. Analysis of the 2,3- carbamate spectrum shows that the C-2 amino function and the C-3 hydroxyl function are cis with respect to each other. The $J_{2,3}$ of 6.5 Hz indicates a dihedral angle of approximately 110° or 60° between H-2 and H-3, depending on the relative orientation between H-2 and the terminal methyl. The 110° orientation is confirmed by the observation of an nOe effect between CH₃-1 and H-3. An amino-lipid with the same terminal stereochemistry has recently been reported.¹¹

The ¹³C data are also consistent with the proposed stereochemistry. The chemical shifts are virtually constant except for C-1 to C-5. Conformational changes due to the bulky p-bromobenzoate group are likely accountable for some of the induced shifts. The formation of the carbonate (4) induces a 12 ppm upfield shift of C-4 and smaller downfield shifts of C-3 and C-5, consistent with the model compounds, the 2-oxo-1,3-dioxanes.¹⁰ The presence of the carbonate and carbonate rings is confirmed by the presence of a carbonyl resonance at 158.6 ppm (2) and 149.3 ppm (4).

δ	FB_1	1	2	3	4
NH		-	5.21	6.63	6.36
H-1	1.27	1.06	1.26	1.30	1.43
H-3	3.14	2.80	3.57	4.17	4.49
H-3	3.74	3.48	4.38	3.98	4.55
H-4a	~1.55	1.43	1.63	1.57	1.95
H-4b		-1.63	1.74	1.73	2.13
H-5	3.84	3.84	3.88	3.92	4.48
H-10	3.62	3.57	3.60	3.61	3.55
H-14	5.16	5.15	5.17	5.19	5.18
H-15	4.94	4.88	4.90	4.91	4.90

TABLE 1. Selected Proton Chemical Shifts in CDCl₃* of Fumonisin Derivatives 1-4 (ppm from TMS).

TABLE 2. J_{H,H} Coupling Constants of Fumonisin Derivatives 1-4 (Hz)

J _{H.H}	\mathbf{FB}_{1}	1	2	3	4
NH, H-2	-	-	-	8.7	9.0
H-1, H-2	6.7	6.5	6.2	6.8	7.0
H-2, H-3	6.8	-	6.5	3.1	2.2
H-3, H-4a	3.2	-	3.1	3.1	3.8
H-3, H-4b	9.6	-	9.7	9.4	10.3
H-4 (AB)	-	-	-	14.6	14.6
H-4a, H-5	-	-	-	7.5	3.6
H-4b, H-5	-	-	-	3.5	5.9

TABLE 3. Selected ¹³C NMR Assignments of Fumonisin Derivatives 1-4 in CDCl₃*.

Position	FB ₁	1	2	3	4
1	16.06	20.10	20.15	18.30	17.89
2	53.76	51.23	53.93	50.19	47.52
3	70.43	73.21	81.29	71.63	78.09
4	41.83	39.75	41.58	40.25	28.49
5	68.48	68.49	67.73	69.26	77.38
6	39.01	37.56	38.00	37.18	34.56
10	69.98	68.82	68.80	68.37	68.72
14	72.80	71.26	71.10	71.22	71.06
15	78.82	77.82	77.83	77.86	77.83

*FB₁ in CD₃OD.

While biosynthetic studies show that the C-1, C-2 terminus is derived from l-alanine,¹² this does not define the absolute stereochemistry of this portion of FB₁, since the assymetric centre may not be preserved during decarboxylation. The relative stereochemistry of this terminus of the FB₁ molecule is as displayed in Figure 2. Comparison of the NMR data for the cyclic derivatives to those for FB₁ indicates that the relative configuration is the same as determined from the derivatives, which suggests that the fumonisin backbone forms a more rigid structure in solution than might be expected from this lipid-like molecule. This relative stereochemistry (Figure 2) is opposite that of sphingosine (2,3 functionalities are threo). A recent study of AAL toxin¹³ reports the same relative stereochemistry with respect to FB₁ between the adjacent amino and hydroxyl substituents, but the opposite stereochemistry for the hydroxyl function analagous to C-5 of FB₁. In a parallel study, Poch et al.¹⁴ have deduced the same relative conformation at C-2 and C-3.

Acknowledgements. We thank Pierre Lafontaine for the FABMS and John Nikiforuk for the NMR data. The cooperation of Drs. David Miller and Marc Savard in providing the FB₁ is also acknowledged. This work constitutes publication no. 1538 of Plant Research Centre.

REFERENCES AND NOTES

- Gelderblom, W.C.A.; Jasliewa, K.; Marasus, W.F.O.; Thiel, P.G.; Horak, R.M.; Vleggaar, R.; Kriek, N.P.J.; Carcinogenesis 1988, 9, 1405.
- 2. Voss, K.A.; Plattner, R.D.; Bacon, C.W.; Norred, W.P.; Mycopathologia, 1990, 112, 81.
- Thiel, P.G.; Marasus, W.F.O.; Sydenham, E.W.; Shephard, G.S.; Gelderblom, W.G.A.; <u>Mycopathologia</u>, 1992, <u>117</u>, 3.
- 4. Harrison, L.R.; Colvin, B.; Greene, J.T.; Newman, L.E.; Cole, J.R.; J. Vet. Diagn. Invest.; 1990, 2, 217.
- 5. Gelderblom, W.C.A.; Kriek, N.P.J.; Marasus, W.F.O.; Thiel, P.G.; Carcinogenesis, 1991, 12, 1247.
- 6. Norred, W.P.; Wang, E.; Yoo, H.; Riley, R.T.; Merril, A.H.; Mycopathologia, 1992, 117, 73.
- Fast Atom Bombardment Mass Spectrometry (FABMS). Spectra were obtained on a Finnigan-MAT 312 spectrometer with an INCOS data system. The samples were introduced into the source as dispersions in thioglycerol.
- 8. Nuclear Magnetic Resonance (NMR). ¹H and ¹³C NMR spectra were acquired on a Bruker AM500 spectrometer. Chemical shifts were referenced to deuterochloroform at 7.24 ppm and 77.0 ppm for ¹H and ¹³C respectively and are reported relative to tetramethyl silane (Me₄Si). Chemical shift assignments were made with ¹H/¹H (COSY) and ¹H/¹³C (HETCOR, HMBC) correlation spectra as well as DEPT and nOe experiments.
- 9. Blackwell, B.A.; Edwards, O.E.; Fruchier, A.; ApSimon, J.W.; in preparation for Can. J. Chem.
- 10. Pihlaja, K.; Rossi, K.; Acta. Chem. Scand., 1993, B37, 289.
- 11. Fanhua, K.; Faulkner, D.J.; J. Org. Chem., 1993, 58, 970.
- 12. Blackwell, B.A.; Miller, J.D.; Savard, M.E.; J. AOAC International, 1994, 77, 506.
- 13. Oikawa, H.; Matsuda, I.; Ichihara, A.; Kohmoto, K.; Tetrahedron. Lett., 1994, 35, 1223.
- 14. Poch, G.K.; Powell, R.G.; Plattner, R.D.; Weisleder, D.; Tetrahedron Lett., accompanying communication.

(Received in USA 30 June 1994; revised 16 August 1994; accepted 23 August 1994)